Microbial desulfonation.

نویسندگان

  • A M Cook
  • H Laue
  • F Junker
چکیده

Organosulfonates are widespread compounds, be they natural products of low or high molecular weight, or xenobiotics. Many commonly found compounds are subject to desulfonation, even if it is not certain whether all the corresponding enzymes are widely expressed in nature. Sulfonates require transport systems to cross the cell membrane, but few physiological data and no biochemical data on this topic are available, though the sequences of some of the appropriate genes are known. Desulfonative enzymes in aerobic bacteria are generally regulated by induction, if the sulfonate is serving as a carbon and energy source, or by a global network for sulfur scavenging (sulfate-starvation-induced (SSI) stimulon) if the sulfonate is serving as a source of sulfur. It is unclear whether an SSI regulation is found in anaerobes. The anaerobic bacteria examined can express the degradative enzymes constitutively, if the sulfonate is being utilized as a carbon source, but enzyme induction has also been observed. At least three general mechanisms of desulfonation are recognisable or postulated in the aerobic catabolism of sulfonates: (1) activate the carbon neighboring the C-SO3- bond and release of sulfite assisted by a thiamine pyrophosphate cofactor; (2) destabilize the C-SO3- bond by addition of an oxygen atom to the same carbon, usually directly by oxygenation, and loss of the good leaving group, sulfite; (3) an unidentified, formally reductive reaction. Under SSIS control, different variants of mechanism (2) can be seen. Catabolism of sulfonates by anaerobes was discovered recently, and the degradation of taurine involves mechanism (1). When anaerobes assimilate sulfonate sulfur, there is one common, unknown mechanism to desulfonate the inert aromatic compounds and another to desulfonate inert aliphatic compounds; taurine seems to be desulfonated by mechanism (1).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Desulfonation and degradation of the disulfodiphenylethercarboxylates from linear alkyldiphenyletherdisulfonate surfactants.

Earlier work showed that the biodegradation of a commercial linear monoalkyldiphenyletherdisulfonate surfactant as a carbon source for microbial growth leads to the quantitative formation of corresponding disulfodiphenylether carboxylates (DSDPECs), which were not degraded. alpha-Proteobacterium strain DS-1 (DSM 13023) catalyzes these reactions. These DSDPECs have now been characterized by high...

متن کامل

Biodegradation of linear alkylbenzene sulfonates in sulfate-leached soil mesocosms.

Aromatic sulfonates (R-SO(3)(-)) can be used as sulfur sources by sulfate-starved bacteria in laboratory cultures and the corresponding phenols are excreted from the cells. The present study was conducted to demonstrate whether such desulfonation reactions also occur in sulfate-leached agricultural soil, where desulfonation of organic sulfur compounds may have agronomic importance as a S source...

متن کامل

Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems.

The Escherichia coli tauABCD and ssuEADCB gene clusters are required for the utilization of taurine and alkanesulfonates as sulfur sources and are expressed only under conditions of sulfate or cysteine starvation. tauD and ssuD encode an alpha-ketoglutarate-dependent taurine dioxygenase and a reduced flavin mononucleotide-dependent alkanesulfonate monooxygenase, respectively. These enzymes are ...

متن کامل

Dissimilation of cysteate via 3-sulfolactate sulfo-lyase and a sulfate exporter in Paracoccus pantotrophus NKNCYSA.

Paracoccus pantotrophus NKNCYSA utilizes (R)-cysteate (2-amino-3-sulfopropionate) as a sole source of carbon and energy for growth, with either nitrate or molecular oxygen as terminal electron acceptor, and the specific utilization rate of cysteate is about 2 mkat (kg protein)(-1). The initial degradative reaction is catalysed by an (R)-cysteate : 2-oxoglutarate aminotransferase, which yields 3...

متن کامل

Microbial desulfonation of substituted naphthalenesulfonic acids and benzenesulfonic acids.

Sulfur-limited batch enrichment cultures containing one of nine multisubstituted naphthalenesulfonates and an inoculum from sewage yielded several taxa of bacteria which could quantitatively utilize 19 sulfonated aromatic compounds as the sole sulfur source for growth. Growth yields were about 4 kg of protein per mol of sulfur. Specific degradation rates were about 4 to 14 mu kat/kg of protein....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FEMS microbiology reviews

دوره 22 5  شماره 

صفحات  -

تاریخ انتشار 1998